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How sensitive is climate to changes in CO,?
A traditional measure

« Climate sensitivity (or equilibrium climate sensitivity)

Definition: the long-term change in
annual-mean, global-mean, near-

surface air temperature to a doubling

of CO, above preindustrial values
(phew!, e.g., Arhenius, 1896, Charney, 1979)

« IPCC 2007 says:
Likely (2-in-3) 2.0 < AT < 4.5°C
Very unlikely (<1-in-10) AT < 1.5°C

 Note this leaves ~2-in-10 chance for AT > 4.5 °C
(though IPCC says observations are less well fit with these values)



Climate sensitivity
1. Different estimates

0.5

— climateprediction.net

o
S
T

o

(&)

a1
T

o
W
T

o
N

Probability density (°C™")
o o
o R

o
—h

Climate sensitivity (°C)



Climate sensitivity
1. Different estimates
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Climate sensitivity
1. Different estimates
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Climate sensitivity
1. Different estimates
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So why these values, and why this shape?



Climate sensitivity
1.5 An aside
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» The main IPCC climate models under-sample the allowed range.
 An issue for regional climate predictions?



Climate sensitivity
2. Estimates from observations

Global energy budget:

R| = |F| + [X'AT

forcing = storage + atmospheric
(ocean) response

In principle, get R;, F, AT from observations, solve for i, then:

A 7;xcoz = A sz)(coz

- -2
Rt 2xco2 =4 W m



Climate sensitivity
2. Estimates from observations

How much warming has there been since pre-industrial times?

Temperature change
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 Global mean temperature change is well observed.
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Climate sensitivity

2. Estimates from observations
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« Warming from CO, and other Greenhouse gases (CH,, O5)

(plus a tiny bit from solar)



Climate sensitivity

2. Estimates from observations
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 Cooling from heat storage in ocean, and aerosols

Aerosols:
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have complicated effects (some warm, some cool, change clouds)



Climate sensitivity
2. Estimates from observations
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« Total climate forcing is quite uncertain and aerosols are
the culprit.




Climate sensitivity

3. Estimates from observations A = A_T
: : R —H
AT . R-H
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* Fat tail is because aerosol forcing could be quite negative



Roe & Baker, 2007

Climate sensitivity
3. Estimates from models
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* Black curve is the relationship between climate feedbacks
and climate sensitivity.
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Climate sensitivity
3. Estimates from models
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Roe & Baker, 2007

Climate sensitivity
3. Estimates from models
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Climate sensitivity

3. Estimates from models
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Climate sensitivity
4. Prospects for progress

a. Improved observations/models
Its hard!! Incremental improvements, but probably no
breakthroughs.

b. Combine different estimates?
Very hard to establish the degree of independence of
individual
estimates. (see knutti and Hegerl, 2008)

c. Use other observations?
(e.g., NH vs. SH; pole-to-eq. AT; seasonality, trop. water
vapor)
Structural errors among models highly uncertain. (see knutti et al, 2010)

=» Prudent not to expect big improvements any time soon....



Climate commitment
1. What if all anthropogenic emissions ceased tomorrow?

Lifetimes: CO,: centuries to 100,000 yrs+
Aerosols: days to weeks
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Climate commitment
1. What's already in store for us?

Lifetimes: CO,: centuries to 100,000 yrs+

Aerosols: days to weeks
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* Immediate loss of aerosols unmasks GHG gas warming



Climate commitment
1. What's already in store for us?

|dealized timeline of past and future climate forcing, if we stop everything today
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Climate commitment
1. What's already in store for us?

Our best guess at what would happen
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Climate commitment
1. What's already in store for us?

But if past forcing has been high....
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Climate commitment
1. What's already in store for us?

But if past forcing has been low....
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Climate commitment
2. Past forcing and climate sensitivity are intrinsically related

If past forcing is strong =» climate sensitivity is low.

If past forcing is weak =» climate sensitivity is high.

For Integrated Assessment Models this matters:
— forcing (including aerosol forcing) cannot be
assumed to be independent of climate sensitivity .



Transient evolution of climate
1. Heat uptake of the ocean is diffusive

Radiation
Balance

Mixed Layer

Deep Ocean

Hansen et al. (1985) show this means that

Climate adjustment time

IS proportional to
(Climate Sensitivity)?




Transient evolution of climate
2. The fat tail grows very slowly
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 Constraining the details of the far tail of climate sensitivity Is not
useful on societally relevant timescales?



CO, stabilization targets are a mistake
1. Climate response to fixed level of CO, is uncertain

(Allen and Frame, 2007)
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» High end sensitivities take a long, long time to be realized
 There is still considerable uncertainty at 2150.



CO, stabilization targets are a mistake
2. Flexibility is key

(Allen and Frame, 2007)
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« A flexible emissions strategy is key to reaching a desired goal



Does global climate predict local climate?
1. Is climate sensitivity a good predictor of regional change?

« Among models, how well are var"s in global climate sensitivity correlated with
var’s in regional climate change at 21007

If |corr. coeff.|

< 0.70 then

Annual mean temperature <50% of local
' ; change is

associated with
global mean
change.

« The magnitude of local changes is affected by many factors
19 models from IPCC
. . . 2007 report,
i GIObaI AT IS qL“te d pOOI‘ pI‘EdICtOI‘ Of |Oca| AT, AP For more calculations
see my web site.

. Icn deb
« If impacts are local, should global AT be used to calculate damages? (cacNisc;Feanldg



Summary:

K 0 O ' 2 s

1. Uncertainty is not ignorance.
The planet is warming and its us that's doing it.

2. Climate sensitivity is uncertain b/c past forcing is
uncertain (primarily aerosols).

3. Uncertainty in climate sensitivity and climate forcing
are not independent.

4, If climate sensitivity is high, it takes a very long time to
get there.

5. CO, stabilization targets are not an efficient way to
achieve a climate goal. (flexibility is vital)

6. Global climate is not a strong predictor of local climate
change.



Extra slides....
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AR4 models undersample climate commitment
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= Dark blue is the IPCC ‘likely’ (68% confidence interval) range of climate
sensitivity (2 to 4.5 C) and implied range of radiative forcing

= AR4 climate models span only this ‘likely’ range

= R and A are correlated within AR4 and older models (Kiehl 2007, Knutti 2008)



Effects of nonlinearity of climate feedbacks
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By how much do observations have to change to change climate sensitivity
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Aspects of feedbacks III.

How does uncertainty in feedbacks translate into uncertainty in
the system response?
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Systems of strong positive feedbacks inherently less predictable




